
PARAMETERS OF BUBBLES AND DROPS MOVING IN A LIQUID 
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The author uses wave theory to examine the processes of formation of bubbles 
and drops moving in a liquid. 

Bubbles and drops, ascending and descending in a liquid, and depending on the proper- 
ties of the continuum and discrete phases, as their size increases, change their shape from 
spherical to ellipsoidal, and to a shape which we shall call cup-shaped. During this pro- 
cess their eccentricity increases. When they reach drops and bubbles of a certain size 
subdivision occurs. 

According to [i], the discrete phase (bubbles and drops) and the continuum phase can 
be regarded as a wave of wavelength I e = ~De, moving with a velocity [2] 

ux = [2~/(pl + P2) De -P gDe (Pl - -  P2)/2 (91 -~ 9~)] 1/2. (1)  

For small enough Re the actual speed of motion of the bubble (or drop) is limited by ~:he 
possible flow speed of the liquid relative to a moving body defined by viscous forces~ and 
being [3] 

u~ = 4ApgO~/3c1~h, (2)  

where cf = kf/Re. 

With increase of the size of the moving body u q increases and when it reaches u D ~ ul, 
since the possible speed of motion of the liquid exceeds the speed of motion of the wave, 
because of their relative motion in the bubble (or drop) circulation arises which leads to 
breakdown of the spherical shape. Equating Eqs. (I) and (2) and using a transformation, we 
obtain the condition for deformation of a sphere 

Bo ~> (3) ~/~ k~/s I2 + Bo/2]~/s/2~/~ (Ka)l/5, (3)  

where (Ka) I is the modified Kapitza number, first used by Kapitza to describe the proyer- 
ties of a liquid [4] (the criterion is known abroad as the Morton number). 

The solution of this case, presented in [3], is analogous in the composition of the 
parameters, but evidently less accurate. 

In the motion of a bubble (or a drop) in liquids of high viscosity loss of sphericity 
can occur at Bo values smaller than as computed by Eq. (3). When the condition ~D e e ~cr 
holds, i.e., when the wavelength of the bubble (or drop) becomes larger than critical, the 
wave ceases to be stable, which leads to its growing, i.e., a change of shape of the babble 
(or drop). According to [2], Icr = 2v(o/Apg) I/2, and, consequently, this occurs for D= 
2(o/Apg) I/2. In [5], which is usually cited in these investigations, the authors reac~ed 
this result on the basis of an arbitrary qualitative assumption without observing the ~uan- 
titative side of the latter. Thus, for small enough values of Ka I the loss of spherici=y by 
a moving bubble or drop will occur when 

B o ~ 4 .  (4 )  

I f  we assume t h a t  t h e  moving  body a c q u i r e s  t h e  s h a p e  o f  a s y m m e t r i c  e l l i p s o i d  o f  r e v o l u -  
t i o n ,  i t s  e c c e n t r i c i t y  can  be d e t e r m i n e d  f rom t h e  f o l l o w i n g  c o n s i d e r a t i o n s .  

From the forward point of the moving body on the side of its axis capillary waves of 
length io = 2~(~ )172 expand with speed uo, while the body itself moves with speed ul 
like a gravity wave. Here the frontal surface of the body is curved so as to achieve a con- 
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Fig. i. Conditions for change of shape of bubbles 
and drops: i, 2) deformation of spherical bubbles 
and drops, respectively; 3, 4) the appearance of 
circulation flows in bubbles and drops; 5, 6) tran- 
sitional shape of bubbles and drops; 7) cup-shaped 
bubbles. 

stant dwell time of the capillary wave at the interface with the medium. Therefore, in a 
time in which the capillary wave goes a distance equal to the semiaxis of the ellipsoid 
a0, the gravity wave must traverse a distance equal to the semiaxis b 0. 

According to [2], the speed of motion of the capillary wave in the conditions examined 
is 

u~ = ufr + (g~)~/~ /(o~ - -  m)/(ol + p~)]l/~. (5 )  

For large enough bubble (or drop) size the speed of the liquid at the boundary Ufr is 
close to the speed of motion uh [6]. 

The layer thickness 6 is a maximum on the short axis of the ellipsoid, and is ~ = 2b 0. 
As the wave moves toward the equator of the ellipsoid the value of 6 decreases, and on the 
equator 6 = 0 and u o = Ufr, i.e., formation of the bubble (or drop) surface ends. 

Substituting u 0 ~ 8a/3T and ~ = 2(b0 - u%x) into Eq. (5) and integrating the equation 
in the limits a= 0 for x = 0 and a = a0 for x = x0 under the postulate that Ufr = const, 
we obtain 

ao = UfJo § 23/2g 1/2 b~/~ (Pl - -  P~)~/2/3u~ (91 § P2) I/2. ( 6 )  

Since e = a,0/b 0 for a symmetric ellipsoid of revolution, dividing the left and right 
sides of Eq. (6) by b 0, taking into account that ul = b0/x0, and substituting Eq. (I) into 
the second term on the right of Eq. (6), after transformations we obtain an expression for 
the eccentricity e in implicit form: 

e = u~rlu ~ + 2/3e 1/~ [1/2 + 2/Bo] 1/z. (7)  

For a cup-shaped bubble in Eq. (5) we have 6 = b0 - u~T, a 0 = Rsin0, b 0 = R(I - cos0), 
R = De/2 I/3 (cos 3 O - 3 cos O + 2) I/3 . Using these relations and integrating Eq. (5) over the 
same limits as for the ellipsoidal body, after transformations we write an equation for the 
angle O in implicit form 

sin0 = (1 - - c o s 0 ) +  (2) 5/6 (1 - -cos0)3 /2 /3(cos~0--  
( 8 )  

- - 3 c o s 0 + 2 ) l / 6 [ 1 / 2 + 2 / B o ] I / 2  

When t h e y  r e a c h  s p e c i f i c  s i z e s  t h e  b u b b l e s  and d r o p s  may b r e a k  up.  Using t h e  laws f o r  sub-  
division of a body in the flow as proposed in [7] we can predict that breakup occurs when 
two conditions hold: The minimum wavelength arising in flow over the phase interface and 
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Fig. 2. Eccentricity of bubbles and drops: 
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l ,  2, 3) 
bubbles in an inviscid light liquid, an inviscid heavy 
liquid, and in a viscous liquid; 4) drops in a liquid. 

capable of increasing with time is less than the length of the frontal arc of the body, 
and after a dwell time of the wave equal to the distance from the forward point of the 
body to the rear point the wave amplitude ~ should increase to a value approximately equal 
to the wavelength, which leads to breakup of the body. 

Using the expression for the minimum wavelength and the rate of growth of its ampli- 
tude [8] we can obtain the result that for a body of ellipsoidal shape the first condition 
is fulfilled when 

6 ~ ~ 4Bo ~ a l ' ~  220 (Pl + P2) /~ PiP2 [2 + Bo/2]*, (9) 

and t he  second c o n d i t i o n  ho lds  when 

Kal ~ 2~/Bo {~P~Pl/2 [2 + Bo/2]/(p~ + p2) 3/2 - -  2u (p~ + p~)}L (10) 

For a cup-shaped bubble we have, respectively, 

Ka~ ~ 2~~ (cos 3 0 -- 3 cos 0 ~ 2)2/~06p~Bo [2 ~ Bo/2]~, (ii) 

K a l ~ 2 ~ 6 n ~ ( c ~  - -  24/3 (cos~ O-- 3 cos O + 2)1/3/0}L (12) 

The analytical expressions obtained were compared with the experimental results. 

Figure 1 shows data on conditions for the start of deformation of bubbles and drops 
[3, 9-13] or the appearance in them of circulation flows [14-16], and also transition of 
bubbles from an ellipsoidal to a cup shape [I, 3, ii, 17, 18]. Figure 1 also shows curves 
i and 2 computed from Eq. (3) for kf = 24 and 48 [3], respectively, and curve 3 computed 
from Eq. (4). 

Analysis of the mutual location of the experimental data and the computed curves shows 
that on the boundaries of the region I generated by the latter, there are points correspond- 
ing to the start of transition from a sphere to an ellipsoid or the appearance of circula- 
tion flows in the bubbles and drops. Here condition (3) is governing for Ka I e 34kf4/2 15, 
and condition (4) governs for smaller values of Ka I. In region III the gas bubbles and 
drops are cup-shaped. More will be written below concerning the transition regions II ~nd 
IV. 

Data on the eccentricity of bubbles and drops presented in [9, 10, 12, 17, 19-28] are 
shown in Fig. 2. Figure 2 also shows the computed lines from Eq. (7) with Ufr/U k = ! (curve 
I) and Ufr/U ~ = 0 (curve Ia) for an ellipsoidal shape of bubbles and drops, and also the 
computed line II, obtained by solving Eq. (8) for 8 with given values of Bo and with subse- 
quent determination of the eccentricity of a cup-shaped bubble e ~ 2a0/b0 = 2sin0/(l - 
cos 0). 
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From analysis of Fig. 2 we note that both for drops and for bubbles ascending in an 
inviscid liquid, at small enough values of Bo the eccentricity is often somewhat less than 
as computed from Eq. (7) under the assumption that the body is ellipsoidal and the speed 
at the interface is the ascent speed. For viscous liquids this position holds up to larger 
values of Bo, the higher the viscosity of the surrounding liquids. When condition (3) 
is reached the ellipsoidal shape changes to cup-shaped. Here in the rear part of the body 
the circulation flows act in the wake to produce partial transition from a convex shape to 
planar, and as the size increases, and correspondingly the speed, this phenomenon becomes 
more pronounced. This region of the data points is located between lines I and II, and be- 
cause of the complexity of the body shape it cannot be written analytically, and Eq. (5) 
can only be solved numerically. Finally, under the condition that the planar rearward 
part of an ellipsoidal body passes through its equatorial plane, the body acquires a cup 
shape (8 < ~/2), and the experimental data are ~rouped near line II, computed from Eq. (8). 
The higher the viscosity of surrounding liquid, @ is 45-75 ~ [21-24], very often 55-65 ~ 
the value @ § 62 ~ and e + 3.33. In the experiment 8 is 45-75 ~ [21-24], very often 55-65 ~ , 
and does not depend on the viscosity of the surrounding liquid. For the two-dimensional 
experiments [21, 24] the rules for the formation of bubbles are the same as for three-di- 
mensional, which confirms the hypothesis as to the wave nature of this process. It should 
be noted that the observed scatter of the experimental data obtained in the different in- 
vestigations for the same conditions is associated primarily with oscillations of bubbles 
and drops due to the hydrodynamic processes in the wake behind the body. Their deviations 
from the computed values are linked with the assumptions, and in particular, that Ufr s Ufr/ 
u~ = I. 

For ellipsoidal bubbles and drops, according to Eq. (7), knowing the values of e and 
Bo, and for cup-shaped bubbles, according to Eq. (8), knowing the values of 8 and Bo, one 
can determine Ufr. It turned out that in each of the experiments, for a given pair - dis- 
perse phase/continuum phase - with increase of the equivalent diameter of the disperse 
phase, or, which is the same thing, of the quantity Bo, the value of Ufr first remained 
more or less constant, which could be considered as conserving the constant body shape, 
and then increased, beginning with a certain value of Bo. 

On the average, for ellipsoidal bubbles floating in an inviscid liquid Ufr ~ 0.88, 
and for cup-shaped bubbles ~fr ~ 0.86. For the motion of drops in inviscid liquids 
Ufr z 0.76. Thus, the hypothesis that the speed of bubbles and drops at the boundary 
is close to their speed of motion [6] is confirmed for an inviscid surrounding medium. Ac- 
cording to [6], for specific conditions one must take into account the viscosity of the 
phases, and Ufr depends on the quantity ~ ~ ~2/~i- However, for bubbles, because D2 << DI, 
this influence can be neglected [6]. In fact, for bubbles floating in a viscous liquid 
the speed at the boundary falls off with increase of viscosity of the liquid, and is ~0.2 
for the conditions of [12]. For drops moving in a viscous liquid the value of Ufr falls 
to 0.5-0.6 for the conditions of [25]. 

As was shown above, the computed value of Ufr for a specific value of Bo begins to 
increase noticeably, which can be considered as a transition from ellipsoidal to cup shape. 
In Fig. 1 these conditions are shown by points, which are located predominantly in region 
II. Thus, one can consider region I as the region of existence of spherical bubbles and 
drops moving in a liquid. When the liquid moves relative to them with a possible speed 
exceeding the speed of motion of the gravity wave, the wavelength is equal to their perime- 

ter, and the appearance of relative speed in the bubbles and drops causes circulation, 
whose velocity in an inviscid surrounding liquid is comparable with their speed of ascent, 
and transition occurs from a spherical shape to a near-ellipsoidal shape. For inviscid 
liquids this transition occurs via region II, and for viscous liquids, evidently via region 
IV. At the same time, because of the presence of a wake in th~ rearward part of the moving 
body one sees the formation of a planar area, which signifies transition from an ellipsoidal 
shape to cup-shaped, and for an intermediate shape (an ellipsoid with a planar area in the 
rear part) a numerical computation must be done. 

In region III (for drops, evidently also in region II) the bubbles and drops may break 
up. Figure 3 shows experimental data obtained in a study of this process [6, 9, 17, 29-31], 
and computed lines from the analytical expression (9)-(12). 

For bubbles fulfillment of the first breakup condition (lines la, Ib) is necessary and 
sufficient when they float in an inviscid liquid. In viscous liquids one observes a devia- 
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Fig. 3. Conditions for break- 
up of bubbles (i) and drops 
(2): la) Xmin ~ 2R@, ib) 
Xmin ~ ~D/2. 

tion from this rule which is greater, the larger the viscosity of the liquid, due, appar- 
ently to the laws mentioned above in the development of circulation in this case. Fulfill- 
ment of the second breakup condition presupposes that in Eq. (i0) the difference of the 
parts of the expression in curved brackets is greater than zero. For values of the ratio 
P2/Pl ordinarily met in practice this can occur for Bo > i04-i0 s, which is considerabJy 
greater than observed. Thus, fulfillment of the first condition for inviscid liquid 
achieves breakup of the bubbles. This agrees with the breakup mechanism described in [17], 
when a toroidal volume of gas separates from the edge of a cup-shaped bubble, if the length 
of the frontal arc of the spherical part of the bubble surface exceeds a critical val~e. 

Judging from Fig. 3, for bubbles it is more likely to be necessary to fulfill both 
the first condition ~line 2) and the second condition {line 3), the second being necessary 
and sufficient. This also agrees with the picture of breakup described in [31], when, as 
a result of increase of amplitude of the ambient surface of the bubble, the wave, on reach- 
ing the condition ~ ~ X in the rear part of a moving drop, forms a daughter drop smaller 
than the original. 

A comparison of the solutions obtained with those of [3, 5, 6, 13, 20, 24, 25, 31] and 
referenced in the reviews [32, 33] shows that with the wave approach in specific cases one 
can obtain analytical relations, including an explicit form, for the eccentricity of bubbles 
and drops and the critical conditions for their change of shape. 

CONCLUSIONS 

i. Using wave theory we have obtained analytical expressions to describe the sha~e of 
bubbles and drops moving in liquids, and the conditions for their breakup~ 

2. The known experimental data agree quite well with values computed using the expres- 
sions derived. 

NOTATION 

~, ~, wavelength and wave amplitude; 6, body thickness at a given point; ul, uo, u, 
Ufr, speed of gravity and capillary waves, motion of the liquid relative to the body, :Ln- 
cluding its boundary; De, equivalent body diameter; Pl, P2, density of the continuum a~id 
disperse phases; ~i, ~2, dynamic viscosity of the continuum and disperse phases; o, inter- 
phase tension; g, acceleration due to gravity; Ap = JPl - P21; cf, drag coefficient of body 
shape; kf, coefficient of proportionality; Re ~ uDePl/~1, Reynolds number; Bo ~ ApgDe2/O, 
Boyd number; Ka~ ~ o3(pl + p2)2/Apg~l 4, modified Kapitsa number for the continuum phas~; 
T, x0, time, duration of flotation of a body at a distance equal to its maximum thickness; 
a0, semimajor axis of ellipsoid, base radius of the cup-shaped body; b0, semiminor axi~ of 
ellipsoid, maximum thickness of cup-shaped body; e, semiangle at vertex of cup-shaped 
body; a, distance from the vertical body axis; e, eccentricity. 

1, 
2. 
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